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Memory of Chirality
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“A formal substitution at an sp3 stereogenic center that proceeds

stereospecifically, even though the reaction proceeds by trigonalization of that

center, and despite the fact that no other permanently chiral elements are present 

in the system.” -T. Kawabata

Defined As:

Fuji, K.; Kawabata, T. Chem. Eur. J. 1998, 4, 373-376.
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First Reported Observation of Chiral Memory
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Seebach, D.; Wasmuth, D. Angew. Chem., Int. Ed. Engl. 1981, 20, 971.

Postulated Origins of selectivity:

1) "The achiral enolate intermediate B forms mixed aggregates with the chiral dilithio derivative A."

A

B

2) "The 6-atom-8-electron !-system is axially chiral...  If this interpretation should turn out to be valid, simple amino   
   acids may also be alkylate via derivatives of type B (R instead of CH2CO2tBu) without racemization.
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The First Rationally Designed MOC Process

O

Ph

MeO

OEt

OEt

OK

Ph

MeO

OEt

OEt

O

OEt

OEt

Ph

MeO
Me

93% ee "chiral" intermediate

KH MeI

66% ee

OMe

OEt

OEt

Ph

! 65% ee

MeO

O

Ph

MeO

OEt

OEt

1. KH

2. MeI

O

OEt

OEt

Ph

Me
MeO

96% ee 0% ee

Kawabata, T.; Yahiro, K.; Fuji, K. J. Am. Chem. Soc. 1991, 113, 9694-9696.
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The First Rationally Designed MOC Process

H

Bn
N

O
OEt

Boc

MOM
R

Bn
N

O
OEt

Boc

MOM

OK
EtO

Bn

N

Boc

Mom

KHMDS

THF/Toluene (1:4)
-78 °C

RX

16-17 h
up to 93% ee

Experimental Support for MOC

Variation in reaction time enolate intermediate of 
prior to MeI quench:

Kawabata, T.; Suzuki, T.; Nagae, Y.; Fuji, K. Angew. Chem. Int. Ed. 2000, 39, 2155-2157.

Barrier of Rotation = 16.0 kcal·mol-1
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Half-Life =

VT NMR experimentation:

5 x 10-4 at 365 K
7 days @ -78 °C

Comparable substrates:
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Alkylation of 1 or 2 led to racemic 3 or 4.

energy minimized orientation 
for deprotonation
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Intramolecular MOC Approaches
Alkylations:
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Kawabata et al.
J. Am. Chem. Soc. 2003, 125, 13012-13013.

cyclic amino acids 2-azetidinones
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Tetrahedron 2006, 62, 130-138.

Michael Additions:
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Enolate Additions to Diazoacetals:
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Kawabata et al.
Org. Biomol. Chem. 2005, 125, 1609-1611.

Stoodley et al.
J. Chem. Soc., Perkin Trans. 1, 1993, 1761-1770.
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Aldol Cyclizations:

Stoodley et al. Tetrahedron Lett. 2002, 43, 3919-3922.
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Asymmetric MOC Cyclization at Ambient Temperature

Overcoming Racemization
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Possibility of an intramolecular MOC reaction
in which "the chiral enolate intermediate reacts 
very rapidly within the time-scale of their
racemization."
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Reactivity vs Racemization?

Enantioselective approaches to rigified cyclic amino acids have played an important role in drug design 
and development, and in the design of novel peptides.

Revied on cyclic amino acids: Park, K.-H.; Kurth, M. J. Tetrahedron, 2002, 58, 8629-8659.
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Base/Solvent Screening
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LiOH was uneffective, NaOH and CsOH had inferior results

Increased amounts of H2O led to decreased reactivity

Solvents: CH2Cl2 proved uneffective, THF was inferior, and EtOH gives saponification.

KHMDS (1.2)

KHMDS (1.2)

KOH (3.0)

KOH (3.0)

KOH (3.0)

DMF

DMF

DMF

DMSO

1% H2O DMSO

60°C, 0.5-
0°C, 0.2

20°C, 0.2

20°C, 0.2

20°C, 0.2

94

97

89

91

98

98

93

98

99

99

Rob Lettan @ Wipf Group Page 8 of 13 6/25/2008



Substrate Scope
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Similar trend also observed with valine and methionine derived substrates.
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Mechanistic Investigation
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Barrier of Racemization
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Difficult to determine barrier of rotation b/c of relative rate of intramolecular cyclization.

Analogous Substrate:

Barrier of Racemization = 15.5 kcal/mol at -78 °C ffrom the slope, 2k = 1.99 x 10-3 min-1
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Relative Rate of Cyclization
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Suggested Reasoning:

Inductive effects of bromide could slightly 
increase the acidity of ! proton

or

chelation assisted deprotonation

Rob Lettan @ Wipf Group Page 12 of 13 6/25/2008



Summary
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Kawabata and coworkers demonstrated a highly enantioselective 
memory of chirality cyclization at ambient temperature.

The obtained cyclic amino acids are important role motifs in drug 
design and development, and in the design of novel peptides.

Interestingly, the cyclization of 4-membered ring systems occurs 
2 to 3 times faster than the corresponding 6-membered variants.

The use of KOH in DMSO in the generation of highly reactive enolates under relatively mild conditions
for enantioselective reactions has had little to no previous precedence, and could prove useful in the
future for C-C bond forming processes.
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